The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish
نویسندگان
چکیده
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.
منابع مشابه
Radar breaks the fog: insights into dorsoventral patterning in zebrafish.
A mong the first major events during development of metazoans is the specification of the anteroposterior (head tail or mouth anus) and the dorsoventral (back-belly) embryonic axes. The genetic network controlling dorsoventral axis specification is best understood and remarkably, it is evolutionarily conserved from fruit f lies to mammals. Labeling of single cells or small groups of cells and t...
متن کاملMaternal induction of ventral fate by zebrafish radar.
In vertebrate embryos, maternal determinants are thought to preestablish the dorsoventral axis by locally activating zygotic ventral- and dorsal-specifying genes, e.g., genes encoding bone morphogenetic proteins (BMPs) and BMP inhibitors, respectively. Whereas the canonical Wntbeta-catenin pathway fulfills this role dorsally, the existence of a reciprocal maternal ventralizing signal remains hy...
متن کاملSmad1 and Smad5 have distinct roles during dorsoventral patterning of the zebrafish embryo.
Smad1 and smad5 encode transcription factors that have been implicated in the transduction of signaling by the bone morphogenetic proteins Bmp2 and/or Bmp4. Here we report the characterization of Smad1 and Smad5 from the zebrafish, Danio rerio. Although smad1, smad5, bmp2b, and bmp4 are all expressed during gastrulation and although all four proteins have ventralizing activities, they appear to...
متن کاملMaternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic Bmp signaling.
We have previously shown that the maternal effect dorsalization of zebrafish embryos from sbn(dtc24) heterozygous mothers is caused by a dominant negative mutation in Smad5, a transducer of ventralizing signaling by the bone morphogenetic proteins Bmp2b and Bmp7. Since sbn(dtc24) mutant Smad5 protein not only blocks wild-type Smad5, but also other family members like Smad1, it remained open to ...
متن کاملRepression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox.
Dorsoventral (DV) patterning of vertebrate embryos requires the concerted action of the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways. In contrast to our understanding of the role of BMP in establishing ventral fates, our understanding of the role of Wnts in ventralizing embryos is less complete. Wnt8 is required for ventral patterning in both Xenopus and zebrafish; however, its m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 99 شماره
صفحات -
تاریخ انتشار 2000